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Black holes are important astrophysical objects which are 
known to be overwhelmingly present in the universe.

Because of their extreme nature in the 
realm of General Relativity, they are the 

perfect place to test the limit of the 
theory, and its unification with quantum 

mechanics for a quantum theory of gravity. 
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signal emitted by the 
merger of two black 
holes rotating around 

each other
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It is remarkable that the first code to simulate the 
merger of two black holes was only obtained in 

2005 by Frans Pretorius, just ten years before the 
LIGO first observation. 
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It is remarkable that the first code to simulate the 
merger of two black holes was only obtained in 

2005 by Frans Pretorius, just ten years before the 
LIGO first observation. 

Frans Pretorius’ simulation, http://physics.princeton.edu/~fpretori/
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Another remarkable evidence for the existence of black holes 
was given in April 2019 by the first image of M87 obtained by 

the Event Horizon Telescope



8

Another remarkable evidence for the existence of black holes 
was given in April 2019 by the first image of M87 obtained by 

the Event Horizon Telescope



9



10



11
Scientific background on the Nobel Prize in 
Physics 2020, https://www.nobelprize.orgPenrose,  Phys. Rev. Lett. 14, 57 (1965)
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Newtonian spacetime:
 dimensional flat space

 dimensional absolute time

The spatial separation is conserved: 

3
1

Minkowski spacetime:
 dimensional flat spacetime

The spacetime separation is conserved:

4

ds = dx2 + dy2 + dz2 ds = −c2dt2 + dx2 + dy2 + dz2
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The Minkowski spacetime is 
the  flat metric on   3 + 1 ℝ3+1

which is the Lorentzian 
equivalent of the 
Euclidean space in 

Riemannian geometry

gm = − dt2 + dx2 + dy2 + dz2
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The Minkowski spacetime is 
the  flat metric on   3 + 1 ℝ3+1

which is the Lorentzian 
equivalent of the 
Euclidean space in 

Riemannian geometry

What happens in the presence of a massive object?

gm = − dt2 + dx2 + dy2 + dz2
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“Spacetime tells matter how to move; 
matter tells spacetime how to curve” 

John Wheeler
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The geometry radically changes if the star becomes 
more and more massive and dense
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The spacetime gets distorted:
 the overall geometry of the light cones changes, 

and a region where not even light can escape forms.
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A spacetime is a  dimensional manifold  equipped with a 
Lorentzian metric  that satisfies the Einstein equation:

4 M
g

where 
•  is the Ricci curvature of ,
•  is the scalar curvature of ,
•  is the stress-energy tensor of the matter fields 

present in the spacetime.

Ric(g) g
R(g) g
T

Ric(g) −
1
2

R(g)g = T
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A vacuum spacetime is a spacetime satisfying the Einstein 
vacuum equation:

Ric(g) = 0
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A vacuum spacetime is a spacetime satisfying the Einstein 
vacuum equation:

An electrovacuum spacetime is a spacetime satisfying 
the Einstein-Maxwell equation:

where  is a -form, called the electromagnetic tensor, 
satisfying the Maxwell equations:

F 2

dF = 0, div F = 0

Ric(g) = 0

Ric(g) = 2F ⋅ F −
1
2

|F |2 g
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1. Minkowski spacetime (1905)

gm = − dt2 + dx2 + dy2 + dz2

= − dt2 + dr2 + r2(dθ2 + sin2 θdϕ2)
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2. Schwarzschild spacetime (1916), for M ∈ ℝ

gM = − (1 −
2M
r ) dt2 + (1 −

2M
r )

−1

dr2 + r2(dθ2 + sin2 θdϕ2)
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3. Kerr spacetime (1963), for |a | ≤ M

where

gM,a = −
Δ
ρ2 (dt − a sin2 θdϕ)2 +

ρ2

Δ
dr2 + ρ2dθ2 +

sin2 θ
ρ2 (adt − (r2 + a2)dϕ)2

Δ = r2 − 2Mr + a2

ρ2 = r2 + a2 cos2 θ
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1. Reissner-Nordström spacetime (1917), for |Q | ≤ M

gM,Q = − (1 −
2M
r

+
Q2

r2 ) dt2 + (1 −
2M
r

+
Q2

r2 )
−1

dr2 + r2(dθ2 + sin2 θdϕ2)
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1. Reissner-Nordström spacetime (1917), for |Q | ≤ M

2. Kerr-Newman spacetime (1965), for a2 + Q2 ≤ M

where

gM,Q = − (1 −
2M
r

+
Q2

r2 ) dt2 + (1 −
2M
r

+
Q2

r2 )
−1

dr2 + r2(dθ2 + sin2 θdϕ2)

gM,a,Q = −
Δ
ρ2 (dt − a sin2 θdϕ)2 +

ρ2

Δ
dr2 + ρ2dθ2 +

sin2 θ
ρ2 (adt − (r2 + a2)dϕ)2

Δ = r2 − 2Mr + a2 + Q2

ρ2 = r2 + a2 cos2 θ
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THE DYNAMICS OF BLACK HOLES
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Theorem [Choquet-Bruhat(1952)] 

The Einstein equation in wave 
coordinates is given by

with initial data , 

where  is the 
D’Alembertian operator. 

□g g = 𝒩(g, ∂g)
(g |Σ0

, k |Σ0
)

□g = gαβ ∇α ∇β
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Theorem [Choquet-Bruhat(1952)] 

The Einstein equation in wave 
coordinates is given by

with initial data , 

where  is the 
D’Alembertian operator. 

□g g = 𝒩(g, ∂g)
(g |Σ0

, k |Σ0
)

□g = gαβ ∇α ∇β

In Minkowski,
 □gm

= − ∂2
t + ∂2

x + ∂2
y + ∂2

z

Σ0

t 

THE DYNAMICS OF BLACK HOLES

Σt

(g |Σ0
, k |Σ0

)

g, Ric(g) = 0

This implies local well-posedness and 
continuous dependence on the initial data.
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What about the global behavior of solutions to the 
Einstein equation? 

Theorem 
[Christodolou-Klainerman(1993)] 

It turns out that this does not happen!

Look at a simpler case: a non-linear scalar wave equation of the form
       (1)□gm

ϕ = (∂tϕ)2

Equation (1) is not stable under small perturbations of initial data!

One may worry that solutions to  which are perturbations 
of the trivial solution (Minkowski) could exist only for finite time…

□g g = 𝒩(g, ∂g)

Minkowski is globally non-linearly stable.

ϕ |t=0 = ∂tϕ |t=0 = 0 ϕ |t=0 = ∂tϕ |t=0 = ϵ > 0
⇒ ϕ(t) = 0 ∀t ⇒ ϕ

t→T
∞
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solutions to the Einstein equation, like black holes? 
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What about the global behavior of perturbations of non-trivial 
solutions to the Einstein equation, like black holes? 

Outside a black hole, there is a region of trapped null geodesics
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Science Alert, Event Horizon Telescope

The trapped null geodesics are unstable, so they tend to scatter off.
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Science Alert, Event Horizon Telescope

The trapped null geodesics are unstable, so they tend to scatter off.

Theorem 
[Dafermos-Rodnianski-
Shlapentokh-Rothman 

(2014)] 

 The wave equation 
 on rotating 

black holes is stable. 
□gM,a

ϕ = 0
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Initial data for the Einstein equation evolve asymptotically in 
time to a finite number of Kerr-Newman black holes, moving 
away from each other.

COLLAPSE CONJ: RIGIDITY CONJ: STABILITY CONJ:
Large initial data give 

rise to the formation of 
a black hole

Kerr-Newman is the 
only family of stationary 

solutions to the 
Einstein equation 

(“no-hair theorem”). 

The Kerr-Newman 
family is stable under 
small perturbations of 

the initial data. 
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Initial data for the Einstein equation which are sufficiently close 
to a Kerr-Newman black hole evolve asymptotically in time to 
another member of the Kerr-Newman family.

Schematically, the Einstein equation is a non-linear PDE
  

with a family of stationary solutions , i.e. .

We want to show that every solution  of (1) with initial data close to a 
 converges asymptotically in time to a  for some  close to . 

𝒩[ϕ] = 0
ϕλ 𝒩[ϕλ] = 0

ϕ
ϕλ ϕλ′ λ′ λ

(1)

Translation in PDE language:
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One first looks at the linearized equation around a solution   ϕλ

(2)(d𝒩) |ϕλ
(ψ) = 0



33

One first looks at the linearized equation around a solution   ϕλ

There are two levels of increasing difficulty:

1. One can only look at special mode solutions, of the separated form

 and show that there are no exponentially growing modes: mode stability

2.  One can prove that general solutions of (2) are bounded and decay in 
time: full linear stability 

ψ(t, r, θ, φ) = e−iωteimφS(θ)R(r)

(2)(d𝒩) |ϕλ
(ψ) = 0



33

One first looks at the linearized equation around a solution   ϕλ

There are two levels of increasing difficulty:

1. One can only look at special mode solutions, of the separated form

 and show that there are no exponentially growing modes: mode stability

2.  One can prove that general solutions of (2) are bounded and decay in 
time: full linear stability 

ψ(t, r, θ, φ) = e−iωteimφS(θ)R(r)

(2)

full linear stability mode stability

(d𝒩) |ϕλ
(ψ) = 0
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NASA's Goddard Space Flight Center/CI Lab

THE UNIVERSE IS NOT VACUUM
In August 2017, LIGO observed the first merger of two neutron stars. Just two seconds 

after the gravitational wave signal was detected, a flash of gamma-ray was detected by the 
FERMI satellite, coming from the same tiny corner of the cosmos.

Those were two 
different signals from 

the same cosmic 
event, one in 

gravitational waves 
and one in 

electromagnetic rays.

The merger of 
two neutron stars 

is expected to 
relax to a charged 

Kerr-Newman 
black hole
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There are two main challenges in addition to those already 
encountered in the vacuum case:

1. It is not clear what the relevant quantities representing 
electromagnetic radiation are.

2. One cannot expect to have just one wave equation to 
analyze, but rather a system of coupled wave equations which 
describes the interaction between the gravitational and the 
electromagnetic radiation:

(2-tensor)
(1-tensor)

Ric(g)

gravitational radiation

= 2F ⋅ F −
1
2

g |F |2

electromagnetic radiation



THE LINEAR STABILITY OF 
REISSNER-NORDSTROM

37



THE LINEAR STABILITY OF 
REISSNER-NORDSTROM

37
(1)Class. Quant. Grav., 36, 205001 (2019), (2) Adv. Theo. Math. Phys., 24, 4, 979 - 1025 (2020),  

(3) Ann. Henri Poincaré, 21, 2485 - 2580 (2020), (4) Comm. Math. Phys. (2020), (5) Annals of PDE, 6, 8 (2020)

Theorem [G.(2019)] The Reissner-Nordström family is linearly stable for .|Q | < M



THE LINEAR STABILITY OF 
REISSNER-NORDSTROM

37
(1)Class. Quant. Grav., 36, 205001 (2019), (2) Adv. Theo. Math. Phys., 24, 4, 979 - 1025 (2020),  

(3) Ann. Henri Poincaré, 21, 2485 - 2580 (2020), (4) Comm. Math. Phys. (2020), (5) Annals of PDE, 6, 8 (2020)

• Identification of gauge invariant quantities  and  representing gravitational and 
electromagnetic radiation, which satisfy a system of coupled Teukolsky equations(1)(2)(3)

𝔟 𝔣

𝒯(𝔣) = Q ⋅ ∇(𝔟)
𝒯(𝔟) = Q ⋅ div(𝔣)

Theorem [G.(2019)] The Reissner-Nordström family is linearly stable for .|Q | < M



THE LINEAR STABILITY OF 
REISSNER-NORDSTROM

37
(1)Class. Quant. Grav., 36, 205001 (2019), (2) Adv. Theo. Math. Phys., 24, 4, 979 - 1025 (2020),  

(3) Ann. Henri Poincaré, 21, 2485 - 2580 (2020), (4) Comm. Math. Phys. (2020), (5) Annals of PDE, 6, 8 (2020)

• Identification of gauge invariant quantities  and  representing gravitational and 
electromagnetic radiation, which satisfy a system of coupled Teukolsky equations(1)(2)(3)

𝔟 𝔣

𝒯(𝔣) = Q ⋅ ∇(𝔟)
𝒯(𝔟) = Q ⋅ div(𝔣)

• Analysis of the system of coupled wave equations obtained through the Chandrasekhar 
transformation in the full range (4)|Q | < M

□g 𝔮−V 𝔮 = Q ⋅ ∇(𝔭)
□g 𝔭−V 𝔭 = Q ⋅ div(𝔮)

Theorem [G.(2019)] The Reissner-Nordström family is linearly stable for .|Q | < M



THE LINEAR STABILITY OF 
REISSNER-NORDSTROM

37
(1)Class. Quant. Grav., 36, 205001 (2019), (2) Adv. Theo. Math. Phys., 24, 4, 979 - 1025 (2020),  

(3) Ann. Henri Poincaré, 21, 2485 - 2580 (2020), (4) Comm. Math. Phys. (2020), (5) Annals of PDE, 6, 8 (2020)

• Identification of gauge invariant quantities  and  representing gravitational and 
electromagnetic radiation, which satisfy a system of coupled Teukolsky equations(1)(2)(3)

𝔟 𝔣

𝒯(𝔣) = Q ⋅ ∇(𝔟)
𝒯(𝔟) = Q ⋅ div(𝔣)

• Analysis of the system of coupled wave equations obtained through the Chandrasekhar 
transformation in the full range (4)|Q | < M

□g 𝔮−V 𝔮 = Q ⋅ ∇(𝔭)
□g 𝔭−V 𝔭 = Q ⋅ div(𝔮)

• Choice of gauge to analyze the quantities which are gauge-dependent(5)

Theorem [G.(2019)] The Reissner-Nordström family is linearly stable for .|Q | < M
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The issue relies in the decomposition in modes in an axially 
symmetric (and not spherically symmetric) background.

Recall the decomposition in modes:

In applying such decomposition for a 1-tensor  or a 2-tensor , one 
obtains an angular ODE for  which defines a spin-weighted spheroidal 
harmonics for different tensors.  
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THE MODE DECOMPOSITION
 IS NOT YOUR FRIEND

Our approach to solve this issue is to abandon the decomposition in 
modes, and perform a physical space analysis, taking advantage of the 
tremendous progress in the analysis of the wave equation in the last 
fifteen years.

If one can prove boundedness of a general solution through a physical 
space analysis, it will then in particular imply the absence of exponentially 
growing modes, therefore proving mode stability!

full linear stability mode stability
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 It makes a mathematician very happy to know that her rigorous 
proof of stability of the charged rotating black hole is the way to 

succeed where the mode analysis in physics failed. 



CONCLUSIONS
[PHILOSOPHICAL NOTE]
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Physics challenges us with interesting mathematical 
problems, and mathematicians’ contribution is often in the 

rigorous analysis of the objects and concepts already 
understood in a heuristic way. 

But actually, just like in the case of black holes, 
mathematics can be crucial in shedding light on physical 
phenomena which would not be understood otherwise.



THANK YOU 
FOR YOUR ATTENTION!
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