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Black holes are important astrophysical objects which are
known to be overwhelmingly present in the universe.
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2017 Nobel Prize in PhySIES

“for decisive contributions to the LIGO detector and the observation of gravitational waves”

Gravitational waves finally captured

On 14 September 2015, the universe’s gravitational waves were observed for the
very first time. The waves, which were predicted by Albert Einstein a hundred
years ago, came from a collision between two black holes. It took 1.3 billion
years for the waves to arrive at the LIGO detector in the USA.
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It is remarkable that the first code to simulate the
merger of two black holes was only obtained in
2005 by Frans Pretorius, just ten years before the
LIGO first observation.
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It is remarkable that the first code to simulate the

merger of two black holes was only obtained in
2005 by Frans Pretorius, just ten years before the
LIGO first observation.

Frans Pretorius’ simulation, http://physics.princeton.edu/~fpretori/



Another remarkable evidence for the existence of black holes
was given in April 2019 by the first image of M87 obtained by
the Event Horizon Telescope




Another remarkable evidence for the existence of black holes
was given in April 2019 by the first image of M87 obtained by
the Event Horizon Telescope

2020 Breakthrough Prize in Fundamental Physics

e The Event Horizon Telescope Collaboration

Citation: For the first image of a supermassive black hole, taken by means of an Earth-sized alliance of telescopes.
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© Nobel Media. lll. Niklas © Nobel Media. lll. Niklas © Nobel Media. lll. Niklas

Elmehed. Elmehed. Elmehed.
Roger Penrose Reinhard Genzel Andrea Ghez
Prize share: 1/2 Prize share: 1/4 Prize share: 1/4

“for the discovery that black hole  “for the discovery of a supermassive compact object

formation is a robust prediction of  at the centre of our galaxy”
the general theory of relativity”



haN [

out,side~
A\

]
observer \_
c D¢

r-am r-0 r-am

Penrose, Phys. Rev. Lett. 14,57 (1965)
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Scientific background on the Nobel Prize in
Physics 2020, https://www.nobelprize.org N



How can mathematics help!?
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no privileged family of straights
Newtonian spacetime:

3 dimensional flat space
1 dimensional absolute time

Minkowski spacetime:
4 dimensional flat spacetime

. . The spacetime separation is conserved:
The spatial separation is conserved:

ds = \/dx2 + dy? + dz?

ds = \/—cza’t2 + dx* + dy* + dz°
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THE SPACETIME OF
SPECIAL RELATIVITY (1905)

Z Z Z Z Z The Minkowski spacetime is
the 3 + 1 flat metric on R>*!
X XXX XX sum-tisairarsa
L which is the Lorentzian
SSSSS X equivalent of the
Euclidean space in
Z Z Z Z Z Z Riemannian geometry
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What happens in the presence of a massive object?




THE SPACETIME OF A STAR (1915)




THE SPACETIME OF A STAR (1915)

“Spacetime tells matter how to move;

matter tells spacetime how to curve”
John Wheeler



time

space









The geometry radically changes if the star becomes
more and more massive and dense



The spacetime gets distorted:
the overall geometry of the light cones changes,
and a region where not even light can escape forms.
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THE EINSTEIN EQUATION




THE EINSTEIN EQUATION

A spacetime is a 4 dimensional manifold M equipped with a
Lorentzian metric g that satisfies the Einstein equation:

1
Ric(g) - SR(&)g =T

where
Ric(g) is the Ricci curvature of g,
R(g) is the scalar curvature of g,

I is the stress-energy tensor of the matter fields

present in the spacetime.
20



A vacuum spacetime is a spacetime satisfying the Einstein

vacuum equation:
Ric(g) =0
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A vacuum spacetime is a spacetime satisfying the Einstein

vacuum equation:
Ric(g) =0

An electrovacuum spacetime is a spacetime satisfying
the Einstein-Maxwell equation:

1
Ric(g)=2F-F—5\F|2g

where I is a 2-form, called the electromagnetic tensor,
satisfying the Maxwell equations:

dFF = 0, divF =0

21
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VACUUM SOLU TIONS

|. Minkowski spacetime (1905)

g = —dt* +dx* + dy* + dz*

= —dr*

dr?
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sin? 0d¢?)




2. Schwarzschild spacetime (1916),for M € R
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2. Schwarzschild spacetime (1916),for M € R
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3. Kerr spacetime (1963),for |a| <M

A 2 : 29
§ma = = — (di —asin® 9d¢>2 T %dﬂ +p7do* + sz (adt — (r* + az)d¢)2
“ p
where A =12 —2Mr + a2

p? =r’+a’cos’d

Event Horizon d':)

Ergosphere
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ELEC TROVACUUM SOLUTIONS

|. Reissner-Nordstrom spacetime (1917),for |Q| <M
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2M 2 'M 2
EMQ =~ (1 —— Q_z) dr* + (1 —-——+ Q—Z) dr’ + r*(d6? + sin” 0d¢?)

r r r r
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ELEC TROVACUUM SOLUTIONS

|. Reissner-Nordstrom spacetime (1917),for |Q| <M

~1
2M 2 'M 2
EMQ =~ (1 —— Q_z) dr* + (1 —-——+ Q—Z) dr’ + r*(d6? + sin” 0d¢?)

r r r r

2. Kerr-Newman spacetime (1965), for \/az +0*<M

A . > p? sin 0 )
EMa 0= — ? (dt — asin® qub) + Kdrz + p2dO* + pe (adt — (r* + az)d¢)
where

A =r?=2Mr+ a® + Q?

p? =r*+a’cos* 0
25
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1 HE DYNAM\CS OF BLACK HOLES

Theorem [Choquet-Bruhat(1952)]

The Einstein equation in wave
coordinates is given by

.8 = N(g, 08)
with initial data (g ‘Zo’ k \ZO),
where [ ], = g“ﬂVaVﬂ is the

D’Alembertian operator.
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1 HE DYNAM\CS OF BLACK HOLES

Theorem [Choquet-Bruhat(1952)]

The Einstein equation in wave
coordinates is given by

c8& = N(g,08)
with |n|t|a| data (g ‘Zo k‘Zo)

In Minkowski

/ o =—0;+0;+0;+0;

This implies local well-posedness and
continuous dependence on the initial data.

26



What about the global behavior of solutions to the
Einstein equation!?
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What about the global behavior of solutions to the
Einstein equation!?

Look at a simpler case: a non-linear scalar wave equation of the form

¢ |t:() — al‘¢ |Z:O — O

= @) =0

Vit

0, @ =0y (1)

¢|t=0 — at¢|t:0 =e¢>0

=> @ — ©
t—T
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What about the global behavior of solutions to the

Einstein equation!?

Look at a simpler case: a non-linear scalar wave equation of the form

¢ |t=0 — at¢ |t=0 =0
= ¢() =0 Vit

gm¢ — (at¢)2

(1)
¢|t:0=at¢|t:0=€>0
=> ¢ — ©

(—T

Equation (1) is not stable under small perturbations of initial data!
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One may worry that solutions to

.8 = (g, 0g) which are perturbations

of the trivial solution (Minkowski) could exist only for finite time...
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What about the global behavior of solutions to the

Einstein equation!?

Look at a simpler case: a non-linear scalar wave equation of the form

¢ |t=0 — at¢ |t=0 =0
= ¢() =0 Vit

0, @ =0y (1)

¢|t=0 — at¢|t:0 =e¢>0

=> ¢ — ©
t—T

Equation (1) is not stable under small perturbations of initial data!

One may worry that solutions to

. & = /N (g, dg) which are perturbations

of the trivial solution (Minkowski) could exist only for finite time...

It turns out that this does not happen!

Theorem

[Christodolou-Klainerman(1993)]

Minkowski is globally non-linearly stable.

27



What about the global behavior of perturbations of non-trivial
solutions to the Einstein equation, like black holes!?
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What about the global behavior of perturbations of non-trivial

solutions to the Einstein equation, like black holes!?
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What about the global behavior of perturbations of non-trivial
solutions to the Einstein equation, like black holes!?

time

Outside a black hole, there is a region of trapped null geodesics 5
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Science Alert, Event Horizon Telescope

The trapped null geodesics are unstable, so they tend to scatter off.
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Science Alert, Event Horizon Telescope

The trapped null geodesics are unstable, so they tend to scatter off.

Theorem The wave equation

[Dafermos-Rodnianski- — 0 on rotatin
Shlapentokh-Rothman |:lgM,a ¢ &

(2014)] black holes is stable.
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THE FINAL STATE CONJECTURE

[KLAINERMAN '02]

time to a finite number of Kerr-Newman black holes, moving
away from each other.

—— ———————————— e —————————— ————————— R ———————— S R e ————————————— — N e —————————————— S

{Initial data for the Einstein equation evolve asymptotically ij
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e e e R e

Initial data for the Einstein equation evolve asymptotically in
time to a finite number of Kerr-Newman black holes, moving
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Large initial data give
rise to the formation of
a black hole
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e e e R e
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COLLAPSE CONJ: RIGIDITY CON]J: | STABILITY CONJ:

Large initial data give
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a black hole

Kerr-Newman is the
only family of stationary
solutions to the
Einstein equation
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THE FINAL STATE CONJECTURE

[KLAINERMAN "02]

e e e R e

Initial data for the Einstein equation evolve asymptotically in
time to a finite number of Kerr-Newman black holes, moving

away from each other.

COLLAPSE CONJ:

RIGIDITY CONJ:

STABILITY CONJ:

Large initial data give
rise to the formation of
a black hole

/’/ \\
f 1 | \ |
\ I\

\ \

\ \
A

Kerr-Newman is the
only family of stationary
solutions to the
Einstein equation
(“‘no-hair theorem™).

The Kerr-Newman
family is stable under
small perturbations of
the initial data.

31



STABILITY OF KERR-NEWMAN
CONJECTURE

gllnitial data for the Einstein equation which are sufficiently close
Hto a Kerr-Newman black hole evolve asymptotically in time to
another member of the Kerr-Newman family.

e

S e e e e
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STABILITY OF KERR-NEWMAN
CONIECTURE

“Initial data for the Einstein equation which are sufficiently close
to a Kerr-Newman black hole evolve asymptotically in time to
&nother member of the Kerr-Newman family.

e —

Translation in PDE language:

Schematically, the Einstein equation is a non-linear PDE
NPl =0 (1)
with a family of stationary solutions ¢,,i.e. /[¢,] = 0.

We want to show that every solution ¢ of (1) with initial data close to a

¢, converges asymptotically in time to a ¢, for some 1’ close to 4.
32




One first looks at the linearized equation around a solution ¢,

@M, =0 @
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One first looks at the linearized equation around a solution ¢,

@M, =0 @

There are two levels of increasing difficulty:
One can only look at special mode solutions, of the separated form
w(t, 7,0, p) = e @™ S(O)R(r)
and show that there are no exponentially growing modes: mode stability

One can prove that general solutions of (2) are bounded and decay in
time: full linear stability

33



One first looks at the linearized equation around a solution ¢,

@M, =0 @

There are two levels of increasing difficulty:
One can only look at special mode solutions, of the separated form
w(t, 7,0, p) = e @™ S(O)R(r)
and show that there are no exponentially growing modes: mode stability

One can prove that general solutions of (2) are bounded and decay in

time: full linear stability
! .E mode stability
33

full linear stability
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THE UNIVERSE IS NOT VACUUM

In August 2017, LIGO observed the first merger of two neutron stars. Just two seconds
after the gravitational wave signal was detected, a flash of gamma-ray was detected by the
FERMI satellite, coming from the same tiny corner of the cosmos.

NASA's Goddard Space Flight Center/CI Lab
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In August 2017, LIGO observed the first merger of two neutron stars. Just two seconds
after the gravitational wave signal was detected, a flash of gamma-ray was detected by the
FERMI satellite, coming from the same tiny corner of the cosmos.

Those were two
different signals from
the same cosmic
event, one in
gravitational waves
and one in
electromagnetic rays.

NASA's Goddard Space Flight Center/CI Lab
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THE UNIVERSE IS NOT VACUUM

In August 2017, LIGO observed the first merger of two neutron stars. Just two seconds
after the gravitational wave signal was detected, a flash of gamma-ray was detected by the
FERMI satellite, coming from the same tiny corner of the cosmos.

Those were two
different signals from
the same cosmic
event, one in
gravitational waves
and one in
electromagnetic rays.

The merger of
two neutron stars
is expected to
relax to a charged
Kerr-Newman
black hole

NASA's Goddard Space Flight Center/CI Lab
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There are two main challenges in addition to those already
encountered in the vacuum case:
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It is not clear what the relevant quantities representing
electromagnetic radiation are.
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There are two main challenges in addition to those already
encountered in the vacuum case:

It is not clear what the relevant quantities representing
electromagnetic radiation are.

One cannot expect to have just one wave equation to
analyze, but rather a system of coupled wave equations which
describes the interaction between the gravitational and the
electromagnetic radiation:

1
Ric(g) — 2F-F—5g\F\2

electromagnetic radiation

gravitational radiation

(2-tensor)
(I-tensor) 36
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THE LINEAR STABILITY OF
REISSNER-NORDS TROM

Theorem [G.(2019)]

(1)Class. Quant. Grav,, 36, 205001 (2019), (2) Adv. Theo. Math. Phys., 24, 4, 979 - 1025 (2020),

The Reissner-Nordstrom family is linearly stable for |Q| < M.

37

(3) Ann. Henri Poincare, 21, 2485 - 2580 (2020), (4) Comm. Math. Phys. (2020), (5) Annals of PDE, 6, 8 (2020)




THE LINEAR STABILITY OF
REISSNER-NORDS TROM

Theorem [G.(2019)]

The Reissner-Nordstrom family is linearly stable for |Q| < M.

|dentification of gauge invariant quantities b and | representing gravitational and

electromagnetic radiation, which satisfy a system of coupled Teukolsky equations(H(2)(3)

(1)Class. Quant. Grav,, 36, 205001 (2019), (2) Adv. Theo. Math. Phys., 24, 4, 979 - 1025 (2020),

T =0-V(b)
J(b) = Q- div(f)

37

(3) Ann. Henri Poincare, 21, 2485 - 2580 (2020), (4) Comm. Math. Phys. (2020), (5) Annals of PDE, 6, 8 (2020)




THE LINEAR STABILITY OF
REISSNER-NORDS TROM

Theorem [G.(2019)] | The Reissner-Nordstrom family is linearly stable for |Q| < M.
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the physics community in the 80s.

111. The equations governing the coupled electromagnetic-gravitational
perturbations of the Kerr-Newman space-time

As we have stated in the introductory section (§ 108), the methods that have
proved to be so successful in treating the gravitational perturbations of the

PERTURBATIONS OF KERR-NEWMAN SPACE-TIME 581

Kerr space-time do not seem to be applicable (nor susceptible to easy
generalizations) for treating the coupled electromagnetic-gravitational per-
turbations of the Kerr-Newman space-time. The principal obstacle is in
finding separated equations. In this section, we shall briefly consider the origin
of this apparent indissolubility of the coupling between the spin-1 and spin-2
fields in the perturbed space-time.
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tensors are not simply related. In particular, in trying to separate in modes
the coupled system of Teukolsky equation, Chandrasekhar arrived to:

TS =0 - div(sl?) =2

5’7(5[2]) =0 V(S[l]) — 9

and the equations do not decouple.
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In applying such decomposition for a |-tensor b or a 2-tensor f, one
obtains an angular ODE for $(f) which defines a spin-weighted spheroidal
harmonics for different tensors.

In an axially symmetric background, the spheroidal harmonics for different
tensors are not simply related. In particular, in trying to separate in modes
the coupled system of Teukolsky equation, Chandrasekhar arrived to:

TS =0 - div(sl?) =2

and all efforts to decouple (or separate) these equations were not successful.
And numerous other alternative manipulations of the system of equations

(139)-(142) were equally unsuccessful.
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For the electromagnetic-gravitational perturbations of Kerr-Newman
spacetime, the decomposition in modes, done to simplify the equations

makes them unsolvable.

Our approach to solve this issue is to abandon the decomposition in

modes, and perform a physical space analysis, taking advantage of the
tremendous progress in the analysis of the wave equation in the last

fifteen years.

If one can prove boundedness of a general solution through a physical
space analysis, it will then in particular imply the absence of exponentially
growing modes, therefore proving mode stability!

full linear stability

#

mode stability
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Physical space analysis of the system of coupled wave equations obtained

through the Chandrasekhar transformation(!)

cq—Vq—ioq = Q- V(p)

¢ P=Vp—idp = Q- div(q)

It makes a mathematician very happy to know that her rigorous
proof of stability of the charged rotating black hole is the way to
succeed where the mode analysis in physics failed.

(1) arXiv:2002.07228
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CONCLUSIONS

[PHILOSOPHICAL NOTE]

Physics challenges us with interesting mathematical
problems, and mathematicians’ contribution is often in the
rigorous analysis of the objects and concepts already
understood in a heuristic way.

But actually, just like in the case of black holes,
mathematics can be crucial in shedding light on physical
phenomena which would not be understood otherwise.
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